量子机学习(QML)中的内核方法最近引起了人们的重大关注,作为在数据分析中获得量子优势的潜在候选者。在其他有吸引力的属性中,当训练基于内核的模型时,可以保证由于训练格局的凸度而找到最佳模型的参数。但是,这是基于以下假设:量子内核可以从量子硬件有效获得。在这项工作中,我们从准确估计内核值所需的资源的角度研究了量子内核的训练性。我们表明,在某些条件下,可以将量子内核在不同输入数据上的值呈指数浓缩(在量子数中)指向一些固定值,从而导致成功训练所需的测量数量的指数缩放。我们确定了可以导致集中度的四个来源,包括:数据嵌入,全球测量,纠缠和噪声的表达性。对于每个来源,分析得出量子内核的相关浓度结合。最后,我们表明,在处理经典数据时,训练用内核比对方法嵌入的参数化数据也容易受到指数浓度的影响。我们的结果通过数值仿真来验证几个QML任务。总体而言,我们提供指南,表明应避免某些功能,以确保量子内核方法的有效评估和训练性。
translated by 谷歌翻译